mudanai官方网站,ai官方网站
DouJia 2025-07-12 00:30 15 浏览
2000年早期ai官方网站,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,*******还不是很普遍,Quora、 Twitter和播客同样用者甚少。
在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!
为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,ai官方网站你将会对人工智能和机器学习有一个基本的认知。
资源目录:
□ 知名研究者
□ 研究机构
□ 视频课程
□ *******
□ 博客
□ 媒体作家
□ 书籍
□ Quora主题栏
□ Github库
□ 播客
□ 实事通讯媒体
□ 会议
□ 论文
研究者
大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,****链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。
■Sebastian Thrun
个人官网:
https://robots.stanford.edu/
*********:
https://en.*********.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/SebastianThrun
Google Scholar:
https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao
Quora:
https://www.quora.com/profile/Sebastian-Thrun
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/
■Yann LeCun
个人官网:
https://yann.lecun.com/
*********:
https://en.*********.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/ylecun?
Google Scholar:
https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yann-LeCun
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
■Nando de Freitas
个人官网:
https://www.cs.ubc.ca/~nando/
*********:
https://en.*********.org/wiki/Nando_de_Freitas
Twitter:
https://twitter.com/NandoDF
Google Scholar:
https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
■Andrew Ng
个人官网:
https://www.andrewng.org/
*********:
https://en.*********.org/wiki/Andrew_Ng
Twitter:
https://twitter.com/AndrewYNg
Google Scholar:
https://scholar.google.com/citations?use
Quora:
https://www.quora.com/profile/Andrew-Ng"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
■Daphne Koller
个人官网:
https://ai.stanford.edu/users/koller/
*********:
https://en.*********.org/wiki/Daphne_Koller
Twitter:
https://twitter.com/DaphneKoller?lang=en
Google Scholar:
https://scholar.google.com/citations?user=5Iqe53IAAAAJ
Quora:
https://www.quora.com/profile/Daphne-Koller
Quora Session:
https://www.quora.com/session/Daphne-Koller/1
■Adam Coates
个人官网:
https://cs.stanford.edu/~acoates/
Twitter:
https://twitter.com/adampaulcoates
Google Scholar:
https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
■Jürgen Schmidhuber
个人官网:
https://people.idsia.ch/~juergen/
*********:
https://en.*********.org/wiki/J%C3%BCrgen_Schmidhuber
Google Scholar:
https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/
■Geoffrey Hinton
*********:
https://en.*********.org/wiki/Geoffrey_Hinton
Google Scholar:
https://www.cs.toronto.edu/~hinton/
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
■Terry Sejnowski
个人官网:
https://www.salk.edu/scientist/terrence-sejnowski/
*********:
https://en.*********.org/wiki/Terry_Sejnowski
Twitter:
https://twitter.com/sejnowski?lang=en
Google Scholar:
https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/
■Michael Jordan
个人官网:
https://people.eecs.berkeley.edu/~jordan/
*********:
https://en.*********.org/wiki/Michael_I._Jordan
Google Scholar:
https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
■Peter Norvig
个人官网:
https://norvig.com/
*********:
https://en.*********.org/wiki/Peter_Norvig
Google Scholar:
https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/
■Yoshua Bengio
个人官网:
https://www.iro.umontreal.ca/~bengioy/yoshua_en/
*********:
https://en.*********.org/wiki/Yoshua_Bengio
Google Scholar:
https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yoshua-Bengio
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/
■Ina Goodfellow
个人官网:
https://www.iangoodfellow.com/
*********:
https://en.*********.org/wiki/Ian_Goodfellow
Twitter:
https://twitter.com/goodfellow_ian
Google Scholar:
https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Ian-Goodfellow
Quora Session:
https://www.quora.com/session/Ian-Goodfellow/1
■Andrej Karpathy
个人官网:
https://karpathy.github.io/
Twitter:
https://twitter.com/karpathy
Google Scholar:
https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Andrej-Karpathy
Quora Session:
https://www.quora.com/session/Andrej-Karpathy/1
■Richard Socher
个人官网:
https://www.socher.org/
Twitter:
https://twitter.com/RichardSocher
Google Scholar:
https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en
Interview:
https://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html
■Demis Hassabis
个人官网:
https://demishassabis.com/
*********:
https://en.*********.org/wiki/Demis_Hassabis
Twitter:
https://twitter.com/demishassabis
Google Scholar:
https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en
Interview:
https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/
■Christopher Manning
个人官网:
https://nlp.stanford.edu/~manning/
Twitter:
https://twitter.com/chrmanning
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
■Fei-Fei Li
个人官网:
https://vision.stanford.edu/people.html
*********:
https://en.*********.org/wiki/Fei-Fei_Li
Twitter:
https://twitter.com/drfeifei
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
Ted Talk:
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en
■François Chollet
个人官网:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Twitter:
https://twitter.com/fchollet
Google Scholar:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Fran%C3%A7ois-Chollet
Quora Session:
https://www.quora.com/session/Fran%C3%A7ois-Chollet/1
■Dan Jurafsky
个人官网:
https://web.stanford.edu/~jurafsky/
*********:
https://en.*********.org/wiki/Daniel_Jurafsky
Twitter:
https://twitter.com/jurafsky
Google Scholar:
https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en
■Oren Etzioni
个人官网:
https://allenai.org/team/orene/
*********:
https://en.*********.org/wiki/Oren_Etzioni
Twitter:
https://twitter.com/etzioni
Google Scholar:
https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en
Quora:
https://scholar.google.com/citations?user
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/
机 构
网络上有大量的知名机构致力于推进人工智能领域的研究和发展。
以下列出的是同时拥有官方网站/博客和推特账号的机构。
■OpenAI
官网:https://openai.com/
Twitter:https://twitter.com/OpenAI
■DeepMind
官网:https://deepmind.com/
Twitter:https://twitter.com/DeepMindA
■Google Research
官网:https://research.googleblog.com/
Twitter:https://twitter.com/googleresearch
■AWS AI
官网:https://aws.amazon.com/blogs/ai/
Twitter:https://twitter.com/awscloud
■facebook AI Research
官网:https://research.fb.com/category/facebook-ai-research-fair/
■Microsoft Research
官网:https://www.microsoft.com/en-us/research/
Twitter:https://twitter.com/MSFTResearch
■Baidu Research
官网:https://research.baidu.com/
Twitter:https://twitter.com/baiduresearch?lang=en
■IntelAI
官网:https://software.intel.com/en-us/ai
Twitter:https://twitter.com/IntelAI
■AI2
官网:https://allenai.org/
Twitter:https://twitter.com/allenai_org
■Partnership on AI
官网:https://www.partnershiponai.org/
Twitter:https://twitter.com/partnershipai
视频课程
以下列出的是一些免费的视频课程和教程。
■Coursera
— Machine Learning (Andrew Ng):
https://www.coursera.org/learn/machine-learning#syllabus
■Coursera
— Neural Networks for Machine Learning (Geoffrey Hinton):
https://www.coursera.org/learn/neural-networks
■Udacity
— Intro to Machine Learning (Sebastian Thrun):
https://classroom.udacity.com/courses/ud120
■Udacity
— Machine Learning (Georgia Tech):
https://www.udacity.com/course/machine-learning--ud262
■Udacity
——Deep Learning (Vincent Vanhoucke):
https://www.udacity.com/course/deep-learning--ud730
■Machine Learning (mathematicalmonk):
https://www.*******.com/playlist?list=PLD0F06AA0D2E8FFBA
■Practical Deep Learning For Coders
——Jeremy Howard & Rachel Thomas:
https://course.fast.ai/start.html
■Stanford CS231n
——Convolutional Neural Networks for Visual Recognition (Winter 2016) :
https://www.*******.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
(class link):https://cs231n.stanford.edu/
■Stanford CS224n
——Natural Language Processing with Deep Learning (Winter 2017) :
https://www.*******.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
(class link):https://web.stanford.edu/class/cs224n/
■Oxford Deep NLP 2017 (Phil Blunsom et al.):
https://github.com/oxford-cs-deepnlp-2017/lectures
■Reinforcement Learning (David Silver):
https://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
■Practical Machine Learning Tutorial with Python (sentdex):
https://www.*******.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
*******
以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:
■sentdex
(225K subscribers, 21M views):
https://www.*******.com/user/sentdex
■Artificial Intelligence A.I.
(7M views):
https://www.*******.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g
■Siraj Raval
(140K subscribers, 5M views):
https://www.*******.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
■Two Minute Papers
(60K subscribers, 3.3M views):
https://www.*******.com/user/keeroyz
■DeepLearning.TV
(42K subscribers, 1.7M views):
https://www.*******.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
■Data School
(37K subscribers, 1.8M views):
https://www.*******.com/user/dataschool
■Machine Learning Recipes with Josh Gordon
(324K views):
https://www.*******.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
■Artificial Intelligence — Topic
(10K subscribers):
https://www.*******.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
■Allen Institute for Artificial Intelligence (AI2)
(1.6K subscribers, 69K views):
https://www.*******.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
■Machine Learning at Berkeley
(634 subscribers, 48K views):
https://www.*******.com/channel/UCXweTmAk9K-Uo9R6**fGtjg
■Understanding Machine Learning — Shai Ben-David
(973 subscribers, 43K views):
https://www.*******.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
■Machine Learning TV
(455 subscribers, 11K views):
https://www.*******.com/channel/UChIaUcs3tho6XhyU6K6KMrw
博 客
■Andrej Karpathy
博客:https://karpathy.github.io/
Twitter:https://twitter.com/karpathy
■i am trask
博客:https://iamtrask.github.io/
Twitter:https://twitter.com/iamtrask
■Christopher Olah
博客:https://colah.github.io/
Twitter:https://twitter.com/ch402
■Top Bots
博客:https://www.topbots.com/
Twitter:https://twitter.com/topbots
■WildML
博客:https://www.wildml.com/
Twitter:https://twitter.com/dennybritz
■Distill
博客:https://distill.pub/
Twitter:https://twitter.com/distillpub
■Machine Learning Mastery
博客:https://machinelearningmastery.com/blog/
Twitter:https://twitter.com/TeachTheMachine
■FastML
博客:https://fastml.com/
Twitter:https://twitter.com/fastml_extra
■Adventures in NI
博客:https://joanna-bryson.blogspot.de/
Twitter:https://twitter.com/j2bryson
■Sebastian Ruder
博客:https://sebastianruder.com/
Twitter:https://twitter.com/seb_ruder
■Unsupervised Methods
博客:https://unsupervisedmethods.com/
Twitter:https://twitter.com/RobbieAllen
■Explosion
博客:https://explosion.ai/blog/
Twitter:https://twitter.com/explosion_ai
■Tim Dettwers
博客:https://timdettmers.com/
Twitter:https://twitter.com/Tim_Dettmers
■When trees fall...
博客:https://blog.wtf.sg/
Twitter:https://twitter.com/tanshawn
■ML@B
博客:https://ml.berkeley.edu/blog/
Twitter:https://twitter.com/berkeleyml
媒体作家
以下是一些人工智能领域方向顶尖的媒体作家。
■Robbie Allen:
https://medium.com/@robbieallen
■Erik P.M. Vermeulen:
https://medium.com/@erikpmvermeulen
■Frank Chen:
https://medium.com/@withfries2
■azeem:
https://medium.com/@azeem
■Sam DeBrule:
https://medium.com/@samdebrule
■Derrick Harris:
https://medium.com/@derrickharris
■Yitaek Hwang:
https://medium.com/@yitaek
■samim:
https://medium.com/@samim
■Paul Boutin:
https://medium.com/@Paul_Boutin
■Mariya Yao:
https://medium.com/@thinkmariya
■Rob May:
https://medium.com/@robmay
■Avinash Hindupur:
https://medium.com/@hindupuravinash
书 籍
以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。
——机器学习
■Understanding Machine Learning From Theory to Algorithms:
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
■Machine Learning Yearning:
https://www.mlyearning.org/
■A Course in Machine Learning:
https://ciml.info/
■Machine Learning:
https://www.intechopen.com/books/machine_learning
■Neural Networks and Deep Learning:
https://neuralnetworksanddeeplearning.com/
■Deep Learning Book:
https://www.deeplearningbook.org/
■Reinforcement Learning: An Introduction:
https://incompleteideas.net/sutton/book/the-book-2nd.html
■Reinforcement Learning:
https://www.intechopen.com/books/reinforcement_learning
——自然语言处理
■Speech and Language Processing (3rd ed. draft):
https://web.stanford.edu/~jurafsky/slp3/
■Natural Language Processing with Python:
https://www.nltk.org/book/
■An Introduction to Information Retrieval:
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
——数 学
■Introduction to Statistical Thought:
https://people.math.umass.edu/~lavine/Book/book.pdf
■Introduction to Bayesian Statistics:
https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
■Introduction to Probability:
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/am**ook.mac.pdf
■Think Stats: Probability and Statistics for Python programmers:
https://greenteapress.com/wp/think-stats-2e/
■The Probability and Statistics Cookbook:
https://statistics.zone/
■Linear Algebra:
https://joshua.**cvt.edu/linearalgebra/book.pdf
■Linear Algebra Done Wrong:
https://www.math.brown.edu/~treil/papers/LADW/book.pdf
■Linear Algebra, Theory And Applications:
https://math.byu.edu/~klkuttle/Linearalgebra.pdf
■Mathematics for Computer Science:
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
■Calculus:
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
■Calculus I for Computer Science and Statistics Students:
https://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora
Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。
■Computer-Science (5.6M followers):
https://www.quora.com/topic/Computer-Science
■Machine-Learning (1.1M followers):
https://www.quora.com/topic/Machine-Learning
■Artificial-Intelligence (635K followers):
https://www.quora.com/topic/Artificial-Intelligence
■Deep-Learning (167K followers):
https://www.quora.com/topic/Deep-Learning
■Natural-Language-Processing (155K followers):
https://www.quora.com/topic/Natural-Language-Processing
■Classification-machine-learning (119K followers):
https://www.quora.com/topic/Classification-machine-learning
■Artificial-General-Intelligence (82K followers)
https://www.quora.com/topic/Artificial-General-Intelligence
■Convolutional-Neural-Networks-CNNs (25K followers):
https://www.quora.com/topic/Artificial-General-Intelligence
■Computational-Linguistics (23K followers):
https://www.quora.com/topic/Computational-Linguistics
■Recurrent-Neural-Networks (17.4K followers):
https://www.quora.com/topic/Recurrent-Neural-Networks
Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。
■/r/MachineLearning (111K readers):
https://www.reddit.com/r/MachineLearning
■/r/robotics/ (43K readers):
https://www.reddit.com/r/robotics/
■/r/artificial (35K readers):
https://www.reddit.com/r/artificial
■/r/datascience (34K readers):
https://www.reddit.com/r/datascience
■/r/learnmachinelearning (11K readers):
https://www.reddit.com/r/learnmachinelearning
■/r/computervision (11K readers):
https://www.reddit.com/r/computervision
■/r/MLQuestions (8K readers):
https://www.reddit.com/r/MLQuestions
■/r/LanguageTechnology (7K readers):
https://www.reddit.com/r/LanguageTechnology
■/r/mlclass (4K readers):
https://www.reddit.com/r/mlclass
■/r/mlpapers (4K readers):
https://www.reddit.com/r/mlpapers
Github
人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。
■Machine Learning (6K repos):
https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93
■Deep Learning (3K repos):
https://github.com/search?q=topic%3Adeep-learning&type=Repositories
■Tensorflow (2K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
■Neural Network (1K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
■NLP (1K repos):
https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories
播 客
对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。
■ConcerningAI
官网:https://concerning.ai/
iTunes:https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211
■This Week in Machine Learning and AI
官网:https://twimlai.com/
iTunes:https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2
■The AI Podcast
官网:https://blogs.nvidia.com/ai-podcast/
iTunes:https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811
■Data Skeptic
官网:https://dataskeptic.com/
iTunes:https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705
■Linear Digressions
官网:https://itunes.apple.com/us/podcast/linear-digressions/id941219323
iTunes:https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2
■Partially Dervative
官网:https://partiallyderivative.com/
iTunes:https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2
■O'Reilly Data Show
官网:https://radar.oreilly.com/tag/oreilly-data-show-podcast
iTunes:https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220
■Learning Machines 101
官网:https://www.learningmachines101.com/
iTunes:https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2
■The Talking Machines
官网:https://www.thetalkingmachines.com/
iTunes:https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2
■Artificial Intelligence in Industry
官网:https://techemergence.com/
iTunes:https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2
■Machine Learning Guide
官网:https://ocdevel.com/podcasts/machine-learning
iTunes:https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2
时事通讯媒体
如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。
■The Exponential View:
https://www.getrevue.co/profile/azeem
■AI Weekly:
https://aiweekly.co/
■Deep Hunt:
https://deephunt.in/
■O’Reilly Artificial Intelligence Newsletter:
https://www.oreilly.com/ai/newsletter.html
■Machine Learning Weekly:
https://mlweekly.com/
■Data Science Weekly Newsletter:
https://www.datascienceweekly.org/
■Machine Learnings:
https://subscribe.machinelearnings.co/
■Artificial Intelligence News:
https://aiweekly.co/
■When trees fall…:
https://meetnucleus.com/p/GVBR82UWhWb9
■WildML:
https://meetnucleus.com/p/PoZVx95N9RGV
■Inside AI:
https://inside.com/technically-sentient
■Kurzweil AI:
https://www.kurzweilai.net/create-account
■Import AI:
https://jack-clark.net/import-ai/
■The Wild Week in AI:
https://www.getrevue.co/profile/wildml
■Deep Learning Weekly:
https://www.deeplearningweekly.com/
■Data Science Weekly:
https://www.datascienceweekly.org/
■KDnuggets Newsletter:
https://www.kdnuggets.com/news/subscribe.html?qst
会 议
随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。
——学术会议
■NIPS (Neural Information Processing Systems):
https://nips.cc/
■ICML (International Conference on Machine Learning):
https://2017.icml.cc
■KDD (Knowledge Discovery and Data Mining):
https://www.kdd.org/
■ICLR (International Conference on Learning Representations):
https://www.iclr.cc/
ACL (Association for Computational Linguistics):
https://acl2017.org/
■EMNLP (Empirical Methods in Natural Language Processing):
https://emnlp2017.net/
■CVPR (Computer Vision and PatternRecognition):
https://cvpr2017.thecvf.com/
■ICCF(InternationalConferenceonComputerVision):
https://iccv2017.thecvf.com/
——专业会议
■O’Reilly Artificial Intelligence Conference:
https://conferences.oreilly.com/artificial-intelligence/
■Machine Learning Conference (MLConf):
https://mlconf.com/
■AI Expo (North America, Europe, World):
https://www.ai-expo.net/
■AI Summit:
https://theaisummit.com/
■AI Conference:
https://aiconference.ticketleap.com/helloworld/
论 文
——arXiv.org上特定领域论文集
■Artificial Intelligence:
https://arxiv.org/list/cs.AI/recent
■Learning (Computer Science):
https://arxiv.org/list/cs.LG/recent
■Machine Learning (Stats):
https://arxiv.org/list/stat.ML/recent
■NLP:
https://arxiv.org/list/cs.CL/recent
■Computer Vision:
https://arxiv.org/list/cs.CV/recent
——Semantic Scholar搜索结果
■Neural Networks (179K results):
https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
■Machine Learning (94K results):
https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
■Natural Language (62K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
■Computer Vision (55K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
■Deep Learning (24K results):
https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。
https://www.arxiv-sanity.com/
---------------------------------------
ImageQ:专业的大数据服务应用平台
登录www.imageq.cn,免费申请【产品试用】
- 上一篇:人工智能机器人生产厂家(人工智能机器人制造公司)
- 已经是最后一篇了
相关推荐
-
- mudanai官方网站,ai官方网站
-
2000年早期ai官方网站,RobbieAllen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,*******还不是很普遍,Quora、Twitter和播客同...
-
2025-07-12 00:30 DouJia
-
- 人工智能机器人生产厂家(人工智能机器人制造公司)
-
近年来德国率先提出"工业4.0"概念人工智能机器人生产厂家,美国推行"先进制造伙伴关系"计划,日本实施"智慧制造系统",而中国也提出了"中国制造2025规划",这些都指向同一个目标,那就是希望通过先进的IT与自动化技术来促进制造业的革新...
-
2025-07-11 21:30 DouJia
-
- 杨幂ai智能人衣替换衣造梦厂(杨幂换头人工智能)
-
AI科技评论按:受到万众瞩目杨幂ai智能人衣替换衣造梦厂的ICLR已经于今天在法国土伦召开。该大会由YannLeCun、YoshuaBengio等几位行业顶级专家于2013年发起。别看它历史不长杨幂ai智能人衣替换衣造梦厂,影...
-
2025-07-11 14:30 DouJia
-
- 关于孙正义大手笔押注AI芯片公司的信息
-
也许在孙看来孙正义大手笔押注AI芯片公司,如今孙正义大手笔押注AI芯片公司的Nuroai公司孙正义大手笔押注AI芯片公司,也许就像十几年前的阿里巴巴一样,彼时,孙看准小公司阿里巴巴未来终将会不一样“对于孙正义的这次投资应该是没有业绩对赌的...
-
2025-07-11 07:30 DouJia
-
- ai人工智能,ai人工智能软件
-
想学习AI人工智能ai人工智能,但完全没有基础没关系上海七亿年计算机有限公司专为零基础人群推出了一门真正“从零到一”的人工智能大模型课程。人工智能和AI没有区别它们都是指通过计算机技术和算法模拟人类智能的技术ai人工智能,这种技术使得计算...
-
2025-07-11 00:30 DouJia
-
- 讯飞ai翻译笔绑定手机了还能用吗,讯飞AI翻译笔
-
你是不是也和美尚君有同样的烦恼,每次出国玩耍,语言问题都是最大的闹心障碍! 有时候只恨平时练习太少,遇上异国讯飞AI翻译笔他乡的朋友,想说的话就在嘴边,却只能手舞足蹈。 不要担心,以后这个问题将不再是问题,地球村概念早就形成讯飞...
-
2025-07-10 21:30 DouJia
-
- 智能ai写作,智能AI写作是原创吗
-
6月20日 阿里妈妈在戛纳国际创意节上正式发布 “AI智能文案”产品 一秒就能写两万条文案 一秒两万条 智能ai写作你一定觉得质量平平 据说生产出来的文案品质与人写文案已经并无二致 那就来看看智能ai写作他们的文案 ...
-
2025-07-10 14:30 DouJia
-
- 2020世界人工智能大会开幕式致辞,2020年世界人工智能大会
-
天津即将迎来第四届世界智能大会2020年世界人工智能大会,这是一个令人期待的盛会2020年世界人工智能大会,届时,人工智能和高科技爱好者和专业人士将齐聚天津,探索智能科技的最新发展以下是对大会基本信息的详细介绍大会时间定在2020年6月23...
-
2025-07-10 07:30 DouJia
-
- 艾薇薇,aiweiwei
-
中国艺术现场关注正在发生aiweiwei的艺术事件!▲▲本文来源aiweiwei:丹尼尔先生 读书与跑步一样aiweiwei,在每天看来没什么分别,每年看来差距似乎也没什么了不起。五年后再看,便是身体与精神状态aiweiwei的巨大分...
-
2025-07-10 00:30 DouJia
-
- 讯飞AI学习机,讯飞智能学机怎么样
-
导读讯飞AI学习机:十九大报告提出:加快建设创新型国家讯飞AI学习机,要瞄准世界科技前沿,强化基础研究,实现前瞻性基础研究、引领性原创成果重大突破。加强应用基础研究,拓展实施国家重大科技项目,突出关键共性技术、前沿引领技术、现代工程技术、颠...
-
2025-07-09 21:30 DouJia
-
- ai97(爱97电视剧在线观看完整版)
-
如果担心手动拍摄时手机晃动导致照片模糊ai97,可以尝试使用定时拍摄功能定时拍摄允许你在按下快门后有足够时间返回拍摄位置或与景物一同入镜,从而拍摄出更加清晰稳定的照片可以使用皮夹饮料罐等物品固定手机,然后设定拍摄时间并按下快门利用AI智能场...
-
2025-07-09 14:30 DouJia
- aicharger,ai charger怎么用
-
asusaicharger是华硕智能充电技术这个技术主要是方便你在电脑关机后想要用USBUSB口旁带闪电标志的给移动设备充电所用aicharger,充电速度会比其他USB接口快2倍左右如果你的电...
-
- 百度热搜
- 新浪热搜
- 1 习近平给田华等8位电影艺术家回信
- 2 热 房价倒数第一城都要建机场了
- 3 新 国产高铁CR450“过于先进不便展示”
- 4 外国游客扎堆扫货“中国造”
- 5 新 《哪吒2》卖了154亿 影院片方还哭穷
- 6 杨少华去世原因是肺衰竭
- 7 新 123456当密码 麦当劳6400万信息泄露
- 8 李连杰自曝患甲亢
- 9 一斤知了价格涨到300元
- 10 怎么学完胖东来亏得更多了
- 最新抖音
-
官方抖音软件下载,抖音app官网免费下载17.81
在现代社会巨大抖音app官网免费下载17.81的竞争压力下抖音app官网免费下载17.81,长时...
抖音充值抖币1:10(抖音充值抖币官网入口)
之前有一篇文章,叫做《被抖音毁掉的年轻人》。大概意思是说,短视频、微博、微信占据了年轻人太多时间...
抖音晨曦姐姐男生照,抖音晨曦姐姐男生照片真实
斗玩网(d.chinaz.com)原创:近日抖音上有一位叫摇呼啦圈的玩家火抖音晨曦姐姐男生照了抖...
抖音名称昵称男生,抖音名称.昵称男
无论是对于已经出生的宝宝抖音名称.昵称男,还是即将出生的宝宝抖音名称.昵称男,对他们而言抖音名称...
抖音头像男士专用2023款励志,抖音头像男士专用2023款
安全目视化管理抖音头像男士专用2023款: 1、安全帽佩戴不规范,都未系好安全帽帽带;...
抖音外卖概念股龙头,抖音外卖概念股
一、投资亮点: 金证股份(600446)是国内最大抖音外卖概念股的金融证券软件企业,公司一...
抖音名字大全男繁体字,2020抖音火爆昵称繁体字男
1、网站的互动性。网站越来越注重网站的互动性抖音名字大全男繁体字了抖音名字大全男繁体字,因为这样...
抖音的晨曦姐姐怎么了,抖音晨曦姐姐到底是男是女
《汉宫春晓图》是中国十大传世名画之一。中国重彩仕女第一长卷。明代仇英作抖音晨曦姐姐到底是男是女,...
- 最新快手
-
快手下载的视频怎么去掉快手号,快手下载视频怎么去掉快手号水印
现在我要给大家介绍这样一款游戏快手下载的视频怎么去掉快手号,这款游戏自从推出就登上了各大平台快手...
快手小游戏破解版游戏大全(快手小游戏破解挂)
快手小游戏破解版游戏大全我的世界中国版红石发射器合成攻略中国版红石发射器怎么合成?红石发射器是...
快手下载最新版本2023红包版,快手下载最新版本2023
第二步快手下载最新版本2023,打开豌豆荚搜索界面搜索“快手”快手下载最新版本2023,然后在搜索结...
快手下载别人作品对方知道吗,快手下载别人作品会不会有提醒
1、1快手下载人家作品知道快手下载别人作品对方知道吗,因为会有下载记录,只要访问别人的主页查看作品的...
下载快手app(下载快手app下载)
打开手机的浏览器下载快手app,进入快手的官方首页在官方首页上,通常会有下载快手APP的链接或按钮点...
快手软件取关(快手软件取关软件)
现在快手软件取关我要给大家介绍这样一款游戏快手软件取关,这款游戏自从推出就登上了各大平台的下载榜...
快手app下载最新版202,下载快手 最新版
快手app下载最新版202我们都知道手机游戏尤其是网络游戏已经大面积的普及到了消费者的生活中来快...
快手市值多少亿2023(快手市值多少亿人民币2023)
1、四财务状况增长表现2023年多数企业实现增长,快手和爱奇艺净利润大幅上升,快手一季度净利润增长...
- 热门关注