抖音最火
百度360必应搜狗本站头条热榜
当前位置:网站首页 > 抖音AI > 正文

mudanai官方网站,ai官方网站

DouJia 2025-07-12 00:30 15 浏览

  2000年早期ai官方网,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,*******还不是很普遍,Quora、 Twitter和播客同样用者甚少。

  在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!

  为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,ai官方网站你将会对人工智能和机器学习有一个基本的认知。

  资源目录:

  □ 知名研究者

  □ 研究机构

  □ 视频课程

  □ *******

  □ 博客

  □ 媒体作家

  □ 书籍

  □ Quora主题栏

  □ Reddit

  □ Github库

  □ 播客

  □ 实事通讯媒体

  □ 会议

  □ 论文

  研究者

  大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,****链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。

  ■Sebastian Thrun

  个人官网:

  https://robots.stanford.edu/

  *********:

  https://en.*********.org/wiki/Sebastian_Thrun

  Twitter:

  https://twitter.com/SebastianThrun

  Google Scholar:

  https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao

  Quora:

  https://www.quora.com/profile/Sebastian-Thrun

  Reddit AMA:

  https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/

  ■Yann LeCun

  个人官网:

  https://yann.lecun.com/

  *********:

  https://en.*********.org/wiki/Sebastian_Thrun

  Twitter:

  https://twitter.com/ylecun?

  Google Scholar:

  https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en

  Quora:

  https://www.quora.com/profile/Yann-LeCun

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

  ■Nando de Freitas

  个人官网:

  https://www.cs.ubc.ca/~nando/

  *********:

  https://en.*********.org/wiki/Nando_de_Freitas

  Twitter:

  https://twitter.com/NandoDF

  Google Scholar:

  https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

  ■Andrew Ng

  个人官网:

  https://www.andrewng.org/

  *********:

  https://en.*********.org/wiki/Andrew_Ng

  Twitter:

  https://twitter.com/AndrewYNg

  Google Scholar:

  https://scholar.google.com/citations?use

  Quora:

  https://www.quora.com/profile/Andrew-Ng"

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

  ■Daphne Koller

  个人官网:

  https://ai.stanford.edu/users/koller/

  *********:

  https://en.*********.org/wiki/Daphne_Koller

  Twitter:

  https://twitter.com/DaphneKoller?lang=en

  Google Scholar:

  https://scholar.google.com/citations?user=5Iqe53IAAAAJ

  Quora:

  https://www.quora.com/profile/Daphne-Koller

  Quora Session:

  https://www.quora.com/session/Daphne-Koller/1

  ■Adam Coates

  个人官网:

  https://cs.stanford.edu/~acoates/

  Twitter:

  https://twitter.com/adampaulcoates

  Google Scholar:

  https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en"

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

  ■Jürgen Schmidhuber

  个人官网:

  https://people.idsia.ch/~juergen/

  *********:

  https://en.*********.org/wiki/J%C3%BCrgen_Schmidhuber

mudanai官方网站,ai官方网站

  Google Scholar:

  https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/

  ■Geoffrey Hinton

  *********:

  https://en.*********.org/wiki/Geoffrey_Hinton

  Google Scholar:

  https://www.cs.toronto.edu/~hinton/

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/

  ■Terry Sejnowski

  个人官网:

  https://www.salk.edu/scientist/terrence-sejnowski/

  *********:

  https://en.*********.org/wiki/Terry_Sejnowski

  Twitter:

  https://twitter.com/sejnowski?lang=en

  Google Scholar:

  https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en

  Reddit AMA:

  https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/

  ■Michael Jordan

  个人官网:

  https://people.eecs.berkeley.edu/~jordan/

  *********:

  https://en.*********.org/wiki/Michael_I._Jordan

  Google Scholar:

  https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en"

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/

  ■Peter Norvig

  个人官网:

  https://norvig.com/

  *********:

  https://en.*********.org/wiki/Peter_Norvig

  Google Scholar:

  https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en

  Reddit AMA:

  https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/

  ■Yoshua Bengio

  个人官网:

  https://www.iro.umontreal.ca/~bengioy/yoshua_en/

  *********:

  https://en.*********.org/wiki/Yoshua_Bengio

  Google Scholar:

  https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en

  Quora:

  https://www.quora.com/profile/Yoshua-Bengio

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/

  ■Ina Goodfellow

  个人官网:

  https://www.iangoodfellow.com/

  *********:

  https://en.*********.org/wiki/Ian_Goodfellow

  Twitter:

  https://twitter.com/goodfellow_ian

  Google Scholar:

  https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en

  Quora:

  https://www.quora.com/profile/Ian-Goodfellow

  Quora Session:

  https://www.quora.com/session/Ian-Goodfellow/1

  ■Andrej Karpathy

  个人官网:

  https://karpathy.github.io/

  Twitter:

  https://twitter.com/karpathy

  Google Scholar:

  https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en

  Quora:

  https://www.quora.com/profile/Andrej-Karpathy

  Quora Session:

  https://www.quora.com/session/Andrej-Karpathy/1

  ■Richard Socher

  个人官网:

  https://www.socher.org/

  Twitter:

  https://twitter.com/RichardSocher

  Google Scholar:

  https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en

  Interview:

  https://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html

  ■Demis Hassabis

  个人官网:

  https://demishassabis.com/

  *********:

  https://en.*********.org/wiki/Demis_Hassabis

  Twitter:

  https://twitter.com/demishassabis

  Google Scholar:

  https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en

  Interview:

  https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/

  ■Christopher Manning

  个人官网:

  https://nlp.stanford.edu/~manning/

  Twitter:

  https://twitter.com/chrmanning

  Google Scholar:

  https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"

  ■Fei-Fei Li

  个人官网:

  https://vision.stanford.edu/people.html

  *********:

  https://en.*********.org/wiki/Fei-Fei_Li

  Twitter:

  https://twitter.com/drfeifei

  Google Scholar:

  https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"

  Ted Talk:

  https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en

  ■François Chollet

  个人官网:

  https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

  Twitter:

  https://twitter.com/fchollet

  Google Scholar:

  https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

  Quora:

  https://www.quora.com/profile/Fran%C3%A7ois-Chollet

  Quora Session:

  https://www.quora.com/session/Fran%C3%A7ois-Chollet/1

  ■Dan Jurafsky

  个人官网:

  https://web.stanford.edu/~jurafsky/

  *********:

  https://en.*********.org/wiki/Daniel_Jurafsky

  Twitter:

  https://twitter.com/jurafsky

  Google Scholar:

  https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en

  ■Oren Etzioni

  个人官网:

  https://allenai.org/team/orene/

  *********:

  https://en.*********.org/wiki/Oren_Etzioni

  Twitter:

  https://twitter.com/etzioni

  Google Scholar:

  https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en

  Quora:

  https://scholar.google.com/citations?user

  Reddit AMA:

  https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/

  机 构

  网络上有大量的知名机构致力于推进人工智能领域的研究和发展。

  以下列出的是同时拥有官方网站/博客和推特账号的机构。

  ■OpenAI

  官网:https://openai.com/

  Twitter:https://twitter.com/OpenAI

  ■DeepMind

  官网:https://deepmind.com/

  Twitter:https://twitter.com/DeepMindA

  ■Google Research

  官网:https://research.googleblog.com/

  Twitter:https://twitter.com/googleresearch

  ■AWS AI

  官网:https://aws.amazon.com/blogs/ai/

  Twitter:https://twitter.com/awscloud

  ■facebook AI Research

  官网:https://research.fb.com/category/facebook-ai-research-fair/

  ■Microsoft Research

  官网:https://www.microsoft.com/en-us/research/

  Twitter:https://twitter.com/MSFTResearch

  ■Baidu Research

  官网:https://research.baidu.com/

  Twitter:https://twitter.com/baiduresearch?lang=en

  ■IntelAI

  官网:https://software.intel.com/en-us/ai

  Twitter:https://twitter.com/IntelAI

  ■AI2

  官网:https://allenai.org/

  Twitter:https://twitter.com/allenai_org

  ■Partnership on AI

  官网:https://www.partnershiponai.org/

  Twitter:https://twitter.com/partnershipai

  视频课程

  以下列出的是一些免费的视频课程和教程。

  ■Coursera

  — Machine Learning (Andrew Ng):

  https://www.coursera.org/learn/machine-learning#syllabus

  ■Coursera

  — Neural Networks for Machine Learning (Geoffrey Hinton):

  https://www.coursera.org/learn/neural-networks

  ■Udacity

  — Intro to Machine Learning (Sebastian Thrun):

  https://classroom.udacity.com/courses/ud120

  ■Udacity

  — Machine Learning (Georgia Tech):

  https://www.udacity.com/course/machine-learning--ud262

  ■Udacity

  ——Deep Learning (Vincent Vanhoucke):

  https://www.udacity.com/course/deep-learning--ud730

  ■Machine Learning (mathematicalmonk):

  https://www.*******.com/playlist?list=PLD0F06AA0D2E8FFBA

  ■Practical Deep Learning For Coders

  ——Jeremy Howard & Rachel Thomas:

  https://course.fast.ai/start.html

  ■Stanford CS231n

  ——Convolutional Neural Networks for Visual Recognition (Winter 2016) :

  https://www.*******.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

  (class link):https://cs231n.stanford.edu/

  ■Stanford CS224n

  ——Natural Language Processing with Deep Learning (Winter 2017) :

  https://www.*******.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

  (class link):https://web.stanford.edu/class/cs224n/

  ■Oxford Deep NLP 2017 (Phil Blunsom et al.):

  https://github.com/oxford-cs-deepnlp-2017/lectures

  ■Reinforcement Learning (David Silver):

  https://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

  ■Practical Machine Learning Tutorial with Python (sentdex):

  https://www.*******.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM

  *******

  以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:

  ■sentdex

  (225K subscribers, 21M views):

  https://www.*******.com/user/sentdex

  ■Artificial Intelligence A.I.

  (7M views):

  https://www.*******.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g

  ■Siraj Raval

  (140K subscribers, 5M views):

  https://www.*******.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

  ■Two Minute Papers

  (60K subscribers, 3.3M views):

  https://www.*******.com/user/keeroyz

  ■DeepLearning.TV

  (42K subscribers, 1.7M views):

  https://www.*******.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ

  ■Data School

  (37K subscribers, 1.8M views):

  https://www.*******.com/user/dataschool

  ■Machine Learning Recipes with Josh Gordon

  (324K views):

  https://www.*******.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal

  ■Artificial Intelligence — Topic

  (10K subscribers):

  https://www.*******.com/channel/UC9pXDvrYYsHuDkauM2fLllQ

  ■Allen Institute for Artificial Intelligence (AI2)

  (1.6K subscribers, 69K views):

  https://www.*******.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ

  ■Machine Learning at Berkeley

  (634 subscribers, 48K views):

  https://www.*******.com/channel/UCXweTmAk9K-Uo9R6**fGtjg

  ■Understanding Machine Learning — Shai Ben-David

  (973 subscribers, 43K views):

  https://www.*******.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q

  ■Machine Learning TV

  (455 subscribers, 11K views):

  https://www.*******.com/channel/UChIaUcs3tho6XhyU6K6KMrw

  博 客

  ■Andrej Karpathy

  博客:https://karpathy.github.io/

  Twitter:https://twitter.com/karpathy

  ■i am trask

  博客:https://iamtrask.github.io/

  Twitter:https://twitter.com/iamtrask

  ■Christopher Olah

  博客:https://colah.github.io/

  Twitter:https://twitter.com/ch402

  ■Top Bots

  博客:https://www.topbots.com/

  Twitter:https://twitter.com/topbots

  ■WildML

  博客:https://www.wildml.com/

  Twitter:https://twitter.com/dennybritz

  ■Distill

  博客:https://distill.pub/

  Twitter:https://twitter.com/distillpub

  ■Machine Learning Mastery

  博客:https://machinelearningmastery.com/blog/

  Twitter:https://twitter.com/TeachTheMachine

  ■FastML

  博客:https://fastml.com/

  Twitter:https://twitter.com/fastml_extra

  ■Adventures in NI

  博客:https://joanna-bryson.blogspot.de/

  Twitter:https://twitter.com/j2bryson

  ■Sebastian Ruder

  博客:https://sebastianruder.com/

  Twitter:https://twitter.com/seb_ruder

  ■Unsupervised Methods

  博客:https://unsupervisedmethods.com/

  Twitter:https://twitter.com/RobbieAllen

  ■Explosion

  博客:https://explosion.ai/blog/

  Twitter:https://twitter.com/explosion_ai

  ■Tim Dettwers

  博客:https://timdettmers.com/

  Twitter:https://twitter.com/Tim_Dettmers

  ■When trees fall...

  博客:https://blog.wtf.sg/

  Twitter:https://twitter.com/tanshawn

  ■ML@B

  博客:https://ml.berkeley.edu/blog/

  Twitter:https://twitter.com/berkeleyml

  媒体作家

  以下是一些人工智能领域方向顶尖的媒体作家。

  ■Robbie Allen:

  https://medium.com/@robbieallen

  ■Erik P.M. Vermeulen:

  https://medium.com/@erikpmvermeulen

  ■Frank Chen:

  https://medium.com/@withfries2

  ■azeem:

  https://medium.com/@azeem

  ■Sam DeBrule:

  https://medium.com/@samdebrule

  ■Derrick Harris:

  https://medium.com/@derrickharris

  ■Yitaek Hwang:

  https://medium.com/@yitaek

  ■samim:

  https://medium.com/@samim

  ■Paul Boutin:

  https://medium.com/@Paul_Boutin

  ■Mariya Yao:

  https://medium.com/@thinkmariya

  ■Rob May:

  https://medium.com/@robmay

  ■Avinash Hindupur:

  https://medium.com/@hindupuravinash

  书 籍

  以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。

  ——机器学习

  ■Understanding Machine Learning From Theory to Algorithms:

  https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

  ■Machine Learning Yearning:

  https://www.mlyearning.org/

  ■A Course in Machine Learning:

  https://ciml.info/

  ■Machine Learning:

  https://www.intechopen.com/books/machine_learning

  ■Neural Networks and Deep Learning:

  https://neuralnetworksanddeeplearning.com/

  ■Deep Learning Book:

  https://www.deeplearningbook.org/

  ■Reinforcement Learning: An Introduction:

  https://incompleteideas.net/sutton/book/the-book-2nd.html

  ■Reinforcement Learning:

  https://www.intechopen.com/books/reinforcement_learning

  ——自然语言处理

  ■Speech and Language Processing (3rd ed. draft):

  https://web.stanford.edu/~jurafsky/slp3/

  ■Natural Language Processing with Python:

  https://www.nltk.org/book/

  ■An Introduction to Information Retrieval:

  https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

  ——数 学

  ■Introduction to Statistical Thought:

  https://people.math.umass.edu/~lavine/Book/book.pdf

  ■Introduction to Bayesian Statistics:

  https://www.stat.auckland.ac.nz/~brewer/stats331.pdf

  ■Introduction to Probability:

  https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/am**ook.mac.pdf

  ■Think Stats: Probability and Statistics for Python programmers:

  https://greenteapress.com/wp/think-stats-2e/

  ■The Probability and Statistics Cookbook:

  https://statistics.zone/

  ■Linear Algebra:

  https://joshua.**cvt.edu/linearalgebra/book.pdf

  ■Linear Algebra Done Wrong:

  https://www.math.brown.edu/~treil/papers/LADW/book.pdf

  ■Linear Algebra, Theory And Applications:

  https://math.byu.edu/~klkuttle/Linearalgebra.pdf

  ■Mathematics for Computer Science:

  https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

  ■Calculus:

  https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf

  ■Calculus I for Computer Science and Statistics Students:

  https://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

  Quora

  Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。

  ■Computer-Science (5.6M followers):

  https://www.quora.com/topic/Computer-Science

  ■Machine-Learning (1.1M followers):

  https://www.quora.com/topic/Machine-Learning

  ■Artificial-Intelligence (635K followers):

  https://www.quora.com/topic/Artificial-Intelligence

  ■Deep-Learning (167K followers):

  https://www.quora.com/topic/Deep-Learning

  ■Natural-Language-Processing (155K followers):

  https://www.quora.com/topic/Natural-Language-Processing

  ■Classification-machine-learning (119K followers):

  https://www.quora.com/topic/Classification-machine-learning

  ■Artificial-General-Intelligence (82K followers)

  https://www.quora.com/topic/Artificial-General-Intelligence

  ■Convolutional-Neural-Networks-CNNs (25K followers):

  https://www.quora.com/topic/Artificial-General-Intelligence

  ■Computational-Linguistics (23K followers):

  https://www.quora.com/topic/Computational-Linguistics

  ■Recurrent-Neural-Networks (17.4K followers):

  https://www.quora.com/topic/Recurrent-Neural-Networks

  Reddit

  Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。

  ■/r/MachineLearning (111K readers):

  https://www.reddit.com/r/MachineLearning

mudanai官方网站,ai官方网站

  ■/r/robotics/ (43K readers):

  https://www.reddit.com/r/robotics/

  ■/r/artificial (35K readers):

  https://www.reddit.com/r/artificial

  ■/r/datascience (34K readers):

  https://www.reddit.com/r/datascience

  ■/r/learnmachinelearning (11K readers):

  https://www.reddit.com/r/learnmachinelearning

  ■/r/computervision (11K readers):

  https://www.reddit.com/r/computervision

  ■/r/MLQuestions (8K readers):

  https://www.reddit.com/r/MLQuestions

  ■/r/LanguageTechnology (7K readers):

  https://www.reddit.com/r/LanguageTechnology

  ■/r/mlclass (4K readers):

  https://www.reddit.com/r/mlclass

  ■/r/mlpapers (4K readers):

  https://www.reddit.com/r/mlpapers

  Github

  人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。

  ■Machine Learning (6K repos):

  https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93

  ■Deep Learning (3K repos):

  https://github.com/search?q=topic%3Adeep-learning&type=Repositories

  ■Tensorflow (2K repos):

  https://github.com/search?q=topic%3Atensorflow&type=Repositories

  ■Neural Network (1K repos):

  https://github.com/search?q=topic%3Atensorflow&type=Repositories

  ■NLP (1K repos):

  https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories

  播 客

  对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。

  ■ConcerningAI

  官网:https://concerning.ai/

  iTunes:https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211

  ■This Week in Machine Learning and AI

  官网:https://twimlai.com/

  iTunes:https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2

  ■The AI Podcast

  官网:https://blogs.nvidia.com/ai-podcast/

  iTunes:https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811

  ■Data Skeptic

  官网:https://dataskeptic.com/

  iTunes:https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705

  ■Linear Digressions

  官网:https://itunes.apple.com/us/podcast/linear-digressions/id941219323

  iTunes:https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2

  ■Partially Dervative

  官网:https://partiallyderivative.com/

  iTunes:https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2

  ■O'Reilly Data Show

  官网:https://radar.oreilly.com/tag/oreilly-data-show-podcast

  iTunes:https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220

  ■Learning Machines 101

  官网:https://www.learningmachines101.com/

  iTunes:https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2

  ■The Talking Machines

  官网:https://www.thetalkingmachines.com/

  iTunes:https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2

  ■Artificial Intelligence in Industry

  官网:https://techemergence.com/

  iTunes:https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2

  ■Machine Learning Guide

  官网:https://ocdevel.com/podcasts/machine-learning

  iTunes:https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2

  时事通讯媒体

  如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。

  ■The Exponential View:

  https://www.getrevue.co/profile/azeem

  ■AI Weekly:

  https://aiweekly.co/

  ■Deep Hunt:

  https://deephunt.in/

  ■O’Reilly Artificial Intelligence Newsletter:

  https://www.oreilly.com/ai/newsletter.html

  ■Machine Learning Weekly:

  https://mlweekly.com/

  ■Data Science Weekly Newsletter:

  https://www.datascienceweekly.org/

  ■Machine Learnings:

  https://subscribe.machinelearnings.co/

  ■Artificial Intelligence News:

  https://aiweekly.co/

  ■When trees fall…:

  https://meetnucleus.com/p/GVBR82UWhWb9

  ■WildML:

  https://meetnucleus.com/p/PoZVx95N9RGV

  ■Inside AI:

  https://inside.com/technically-sentient

  ■Kurzweil AI:

  https://www.kurzweilai.net/create-account

  ■Import AI:

  https://jack-clark.net/import-ai/

  ■The Wild Week in AI:

  https://www.getrevue.co/profile/wildml

  ■Deep Learning Weekly:

  https://www.deeplearningweekly.com/

  ■Data Science Weekly:

  https://www.datascienceweekly.org/

  ■KDnuggets Newsletter:

  https://www.kdnuggets.com/news/subscribe.html?qst

  会 议

  随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。

  ——学术会议

  ■NIPS (Neural Information Processing Systems):

  https://nips.cc/

  ■ICML (International Conference on Machine Learning):

  https://2017.icml.cc

  ■KDD (Knowledge Discovery and Data Mining):

  https://www.kdd.org/

  ■ICLR (International Conference on Learning Representations):

  https://www.iclr.cc/

  ACL (Association for Computational Linguistics):

  https://acl2017.org/

  ■EMNLP (Empirical Methods in Natural Language Processing):

  https://emnlp2017.net/

  ■CVPR (Computer Vision and PatternRecognition):

  https://cvpr2017.thecvf.com/

  ■ICCF(InternationalConferenceonComputerVision):

  https://iccv2017.thecvf.com/

  ——专业会议

  ■O’Reilly Artificial Intelligence Conference:

  https://conferences.oreilly.com/artificial-intelligence/

  ■Machine Learning Conference (MLConf):

  https://mlconf.com/

  ■AI Expo (North America, Europe, World):

  https://www.ai-expo.net/

  ■AI Summit:

  https://theaisummit.com/

  ■AI Conference:

  https://aiconference.ticketleap.com/helloworld/

  论 文

  ——arXiv.org上特定领域论文集

  ■Artificial Intelligence:

  https://arxiv.org/list/cs.AI/recent

  ■Learning (Computer Science):

  https://arxiv.org/list/cs.LG/recent

  ■Machine Learning (Stats):

  https://arxiv.org/list/stat.ML/recent

  ■NLP:

  https://arxiv.org/list/cs.CL/recent

  ■Computer Vision:

  https://arxiv.org/list/cs.CV/recent

  ——Semantic Scholar搜索结果

  ■Neural Networks (179K results):

  https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false

  ■Machine Learning (94K results):

  https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false

  ■Natural Language (62K results):

  https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false

  ■Computer Vision (55K results):

  https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false

  ■Deep Learning (24K results):

  https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false

  此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。

  https://www.arxiv-sanity.com/

  ---------------------------------------

  ImageQ:专业的大数据服务应用平台

  登录www.imageq.cn,免费申请【产品试用】

相关推荐

mudanai官方网站,ai官方网站
mudanai官方网站,ai官方网站

  2000年早期ai官方网站,RobbieAllen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,*******还不是很普遍,Quora、Twitter和播客同...

2025-07-12 00:30 DouJia

人工智能机器人生产厂家(人工智能机器人制造公司)
人工智能机器人生产厂家(人工智能机器人制造公司)

  近年来德国率先提出"工业4.0"概念人工智能机器人生产厂家,美国推行"先进制造伙伴关系"计划,日本实施"智慧制造系统",而中国也提出了"中国制造2025规划",这些都指向同一个目标,那就是希望通过先进的IT与自动化技术来促进制造业的革新...

2025-07-11 21:30 DouJia

杨幂ai智能人衣替换衣造梦厂(杨幂换头人工智能)
杨幂ai智能人衣替换衣造梦厂(杨幂换头人工智能)

  AI科技评论按:受到万众瞩目杨幂ai智能人衣替换衣造梦厂的ICLR已经于今天在法国土伦召开。该大会由YannLeCun、YoshuaBengio等几位行业顶级专家于2013年发起。别看它历史不长杨幂ai智能人衣替换衣造梦厂,影...

2025-07-11 14:30 DouJia

关于孙正义大手笔押注AI芯片公司的信息
关于孙正义大手笔押注AI芯片公司的信息

也许在孙看来孙正义大手笔押注AI芯片公司,如今孙正义大手笔押注AI芯片公司的Nuroai公司孙正义大手笔押注AI芯片公司,也许就像十几年前的阿里巴巴一样,彼时,孙看准小公司阿里巴巴未来终将会不一样“对于孙正义的这次投资应该是没有业绩对赌的...

2025-07-11 07:30 DouJia

ai人工智能,ai人工智能软件
ai人工智能,ai人工智能软件

想学习AI人工智能ai人工智能,但完全没有基础没关系上海七亿年计算机有限公司专为零基础人群推出了一门真正“从零到一”的人工智能大模型课程。人工智能和AI没有区别它们都是指通过计算机技术和算法模拟人类智能的技术ai人工智能,这种技术使得计算...

2025-07-11 00:30 DouJia

讯飞ai翻译笔绑定手机了还能用吗,讯飞AI翻译笔
讯飞ai翻译笔绑定手机了还能用吗,讯飞AI翻译笔

    你是不是也和美尚君有同样的烦恼,每次出国玩耍,语言问题都是最大的闹心障碍!  有时候只恨平时练习太少,遇上异国讯飞AI翻译笔他乡的朋友,想说的话就在嘴边,却只能手舞足蹈。  不要担心,以后这个问题将不再是问题,地球村概念早就形成讯飞...

2025-07-10 21:30 DouJia

智能ai写作,智能AI写作是原创吗
智能ai写作,智能AI写作是原创吗

  6月20日  阿里妈妈在戛纳国际创意节上正式发布  “AI智能文案”产品  一秒就能写两万条文案    一秒两万条  智能ai写作你一定觉得质量平平  据说生产出来的文案品质与人写文案已经并无二致  那就来看看智能ai写作他们的文案 ...

2025-07-10 14:30 DouJia

2020世界人工智能大会开幕式致辞,2020年世界人工智能大会
2020世界人工智能大会开幕式致辞,2020年世界人工智能大会

天津即将迎来第四届世界智能大会2020年世界人工智能大会,这是一个令人期待的盛会2020年世界人工智能大会,届时,人工智能和高科技爱好者和专业人士将齐聚天津,探索智能科技的最新发展以下是对大会基本信息的详细介绍大会时间定在2020年6月23...

2025-07-10 07:30 DouJia

艾薇薇,aiweiwei
艾薇薇,aiweiwei

中国艺术现场关注正在发生aiweiwei的艺术事件!▲▲本文来源aiweiwei:丹尼尔先生  读书与跑步一样aiweiwei,在每天看来没什么分别,每年看来差距似乎也没什么了不起。五年后再看,便是身体与精神状态aiweiwei的巨大分...

2025-07-10 00:30 DouJia

讯飞AI学习机,讯飞智能学机怎么样
讯飞AI学习机,讯飞智能学机怎么样

导读讯飞AI学习机:十九大报告提出:加快建设创新型国家讯飞AI学习机,要瞄准世界科技前沿,强化基础研究,实现前瞻性基础研究、引领性原创成果重大突破。加强应用基础研究,拓展实施国家重大科技项目,突出关键共性技术、前沿引领技术、现代工程技术、颠...

2025-07-09 21:30 DouJia

ai97(爱97电视剧在线观看完整版)
ai97(爱97电视剧在线观看完整版)

如果担心手动拍摄时手机晃动导致照片模糊ai97,可以尝试使用定时拍摄功能定时拍摄允许你在按下快门后有足够时间返回拍摄位置或与景物一同入镜,从而拍摄出更加清晰稳定的照片可以使用皮夹饮料罐等物品固定手机,然后设定拍摄时间并按下快门利用AI智能场...

2025-07-09 14:30 DouJia

aicharger,ai charger怎么用

asusaicharger是华硕智能充电技术这个技术主要是方便你在电脑关机后想要用USBUSB口旁带闪电标志的给移动设备充电所用aicharger,充电速度会比其他USB接口快2倍左右如果你的电...